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Steady flow past non-uniform wire grids 

By J.  H. McCARTHY 
Hydromechanics Laboratory, David Taylor Model Basin, Washington 

(Received 15 September 1963 and in revised form 10 February 1964) 

A solution is obtained for steady, moderately sheared, three-dimensional flow 
past a wire grid of arbitrary resistance distribution which is placed normal to the 
axis of a duct of arbitrary but constant cross-section. The formulation presented 
is an extension of those given by Owen & Zienkiewicz (1957) and Elder (1959) 
for weakly shared, two-dimensional flow past wire grids. Unlike these earlier 
formulations, however, in the present study the equations of motion are solved 
without placing restrictions on the magnitude of variation of resistance across 
the grid. The resulting solution, taking account of streamline deflexions, is 
verified experimentally for moderately sheared flow past three grids constructed 
to produce three widely differing velocity distributions in a water tunnel of 
circular cross-section. 

1. Introduction 
The present study was undertaken to develop a method for producing pre- 

scribed longitudinal ship wake distributions in which model propellers could be 
tested in variable-pressure water tunnels. These wakes are, in general, of 
arbitrary distribution and departures from uniformity of flow are large. This 
paper is concerned with the development of a solution for describing such flows 
which are generated by non-uniform wire grids, and experimental confirmation 
of the solution. Three grids were constructed to produce velocity distributions 
which would check the theoretical results adequately and which were representa- 
tive of wakes of interest in propeller testing. The wake producer grids were as 
follows : 

GRID A. A grid constructed of horizontal cylindrical rods of variable spa,cing 
to produce a two-dimensional cosine resistance-coefficient distribution. 

GRID B. A grid constructed of wire screens to produce a circumferentially 
varying cosine velocity distribution. 

GRID C. A grid constructed of wire screens to produce the distribution of 
longitudinal flow velocity observed in the wake of a single-screw surface ship. 

Published analytical work on steady flow past non-uniform wire grids has 
treated the two-dimensional problem. Owen & Zienkiewicz (1957) showed that 
for weakly sheared flows past wire grids located in a plane normal to the axis of a 
duct, a linear relationship exists between the downstream velocity distribution 
and the resistance-coefficient distribution across the grid. Two years later Elder 
(1959), using a more general approach, verified this solution and extended the 
formulation to cover the case of the screen of arbitrary shape. Both of these 
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formulations require that departures from uniformity of velocity and resistance 
coefficient be small, and are theoretically applicable only to weakly sheared flows. 
To test their solution, Owen & Zienkiewicz (1957) constructed a grid with a 
linear variation in resistance coefficient, and obtained surprisingly close agree- 
ment between the measured and computed velocity profiles for a value of shear 
parameter, 7 ,  as high as 0.45. The measured downstream velocity profile was 
nearly linear and the slight non-linearity was partially ascribed to errors in the 
fabrication of the grid. 
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FIGURE 1. Co-ordinate system and grid arrangement. 

In  the present study the problem is extended to include three-dimensional 
flows and it is not required that departures in uniformity of velocity and re- 
sistance coefficient be small. It is hypothesized, however, that for moderately 
sheared flows streamline deflexions are sufficiently small to allow partial 
linearization of the equations of motion. A high-order solution of the partially 
linearized equations of motion is found which gives a non-linear relation between 
downstream velocity distribution and grid resistance-coefficient distribution. 
This solution appears to be in better agreement with the experimental results 
obtained by Owen & Zienkiewicz (1957), for a linear distribution of resistance 
coefficient, than is obtained from their first-order solution. For non-uniform 
flows where the effect of streamline deflexions is not negligible, an approximate 
method is developed for calculating streamline deflexion corrections to the 
resulting velocity distributions. The method is applied to GRID A and GRID C, 
and the numerical calculations for the corrections are summarized in table 4. 

1.1. Flow through a non-unqorm wire grid 
On passing through a grid of non-uniform geometry, fluid is locally deflected 
and its static pressure is reduced (see figure 1). The discontinuity in lateral velocity 
due to the streamline deflexion may be described by a refraction coefficient, a, 
which expresses the ratio of the lateral velocity immediately downstream 
( z  = + 0) of the grid to that immediately upstream ( z  = - 0) of the grid, 

The pressure drop, Ap, across the grid may be described by a dimensionless 
resistance coefficient, K ,  which is based on the local velocity, w,,, normal to 
the grid, = (P--O-P+o)/~PW& (1.2) 
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Weighardt (1953) and other investigators have found that grid geometry 
and resistance coefficient may be related as follows: 

K = cs/(l  -s)2, 

where s is the solidity ratio of the grid, and c is a loss coefficient which is a function 
of Reynolds number, Re. The characteristic Reynolds number, w,d/(l - s )  V ,  

is based on wire diameter and the interstitialvelocitythrough the grid, wo/( 1 - 8). 
For square-mesh wire screens Simmons & Cowdrey (1949) determined from 
experiment that for 300 < Re < 400 the loss coefficient, c ,  could be taken as 
approximately unity. Weighardt plotted the data obtained by Simmons & 
Cowdrey and other investigators, and obtained an empirical relation between Re 
and c which fitted the experimental data very well for 60 < Re < 600. For 
600 < Re < 3000 there was considerable scatter, most of the data indicating that 
0.65 < c < 0.85 in this range of Reynolds numbers. Cornell (1958) extended the 
plot of available data up to Re M 20,000. For square-mesh wire screens he found 
that the loss coefficient levelled off to about 0.80 in the range 600 < Re < 4000, 
and then rose gradually to a value of 1.00 at Re M 15,000. Cornell also plots 
data for flow normal to a bank of cylindrical tubes, where the loss coefficient 
remains approximately constant at about 0.70 for the range 2000 < Re < 40,000. 

A conclusion that may be drawn from the above is that for either square- 
mesh wire screens or a bank of cylindrical tubes, for lo3 < Re < lo4, the loss 
coefficient remains relatively constant a t  a value somewhat less than unity. 
It was noted, however, that when Owen & Zienkiewicz (1957) produced a near- 
linear velocity profile downstream of a bank of cylindrical rods, the rod spacings 
were determined on the assumption that the loss coefficient could be taken as 
unity. A careful examination of the rod spacings adopted by Owen & Zienkiewicz 
indicated that the desired velocity distribution could not have been correctly 
calculated from their theoretical solution when using a loss coefficient of unity. 
Assuming that their theoretical solution is correct, and assuming that the loss 
coefficient, c, remained constant for the Reynolds number range covered in the 
experiment, 5000 < Re < 9000, it was found that c should be taken as 0.78. Avail- 
able experimental data, as discussed above, indicates that such a value is not 
unreasonable, and it is used later for the design of GRID A, which is an arrange- 
ment of horizontal cylindrical rods. 

GRID B and GRID C of this paper were constructed by arranging wire screens 
of various mesh sizes in carefully fitted patterns on a single support screen of 
low solidity ratio. All screens were of the square-mesh, plain-weave variety and 
made of stainless steel wire. The support screen used in every case was a 
16 x 16wiresIin.2 mesh with a 0.009in. wire diameter and a 0.267 solidity 
ratio. The resistance coefficient of each screen combination was determined 
from (1.2) based on measurements, made in a water tunnel, of pressure drop 
and flow velocity across the screens. The experimental results are shown in 
figure 2, along with an estimated resistance coefficient curve which was obtained 
by adding the individual resistance coefficients of the support and overlay 
screens as calculated from (1.3), taking c = 0.78. For the Reynolds number range 
covered in the tests, 600 < Re < 5000, (based on the overlay screen geometry) the 
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change in combined resistance coefficient was found to be small. It was also 
found that changes in the orientation of the wires of one screen relative to the 
other had a negligible effect on resistance coefficient. The scatter of the experi- 
mental results in figure 2 can probably be attributed to departures of screen 
geometry from nominal dimensions, and dirt or scale which would occasionally 
collect on the screens. A list of the screens tested and measured resistance 
coefficients are given in table 1. 

8, solidity ratio of overlay screen 

FIGURE 2.  Plot of experimentally and theoretically determined relationship between 
K and s, for screens in combination with a 16 x 16 x 0.009 in. support screen. 

In the present study the results of the experimental investigation of the 
refraction coefficient, a, made by Spangenburg (see Taylor & Batchelor 1949) 
will be assumed to hold for the three grids which were constructed to verify the 
solution which is later developed. From these tests, on the basis of lateral 
forces measured on square-mesh wire screens placed obliquely to the flow, 
it was found that the refraction coefficient, u, is independent of Reynolds 
number and empirically related to the resistance coefficient, K ,  by the expression 

CI. = b(l+K)-# (b = 1.1). (1.4) 

While the experiments were confined to the Reynolds number range 

80 < Re < 300 
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it  will be assumed here that this expression remains valid for higher Reynolds 
numbers, since the resistance coefficient itself, above this range, appears to be 
relatively insensitive to changes in Reynolds number. For the grids constructed 
of screens it will also be assumed, as was done by Taylor & Batchelor, that the 
refraction coefficient is ‘ . . .rotationally symmetrical to its (the screen’s) plane’. 

Number 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

I t  

7 

Solidky 
ratio 
0 
0.211 
0.240 
0.254 
0.267 
0.296 
0.326 
0.350 
0.360 
0.373 
0.392 
0.407 
0.422 
0.444 
0.451 
0.466 
0.480 
0.492 
0.5 11 
0.517 
0.529 
0.542 
0.553 
0.558 
0-564 
0.577 
0.577 
0.590 
0.596 
0.609 
0.638 
0.668 
0.695 
0.702 
0.750 
0.806 

Overlay screen 
A 

Mesh 

4 
4 
8 

16 
18 
24 
26 
20 
12 
20 
10 
20 
32 
26 
18 
35 
18 
30 
18 
35 
24 
35 
24 
40 
10 
100 
40 
28 
50 
14 
12 
16 
14 
20 
20 

- 

’I 

Wire 
diameter 

(in.) 

0.0280 
0.0320 
0.0170 
0~0090 
0.0090 
0-0075 
0.0075 
0~0100 
0.0170 
0*0110 
0.0230 
0.0120 
0.0080 
0~0100 
0.0150 
0*0080 
0.0160 
00100 
0.0170 
0*0090 
0.0135 
0.0095 
0.0 140 
0.0085 
0.0350 
0.0035 
0.0090 
0-0130 
0-0075 
0.0280 
0.0350 
0.0280 
0.0320 
0.0250 
0.0280 

- 

Combined 
resistance 
coefficient 

0-42 
0.80 
0.90 
0.86 
0.89 
0.91 
1.07 
1.20 
1.10 
1.11 
1.22 
1.40 
1.41 
1.64 
1.61 
1.61 
1.87 
1.68 
1.90 
2.04 
2.24 
2.22 
2.64 
2.56 
2-70 
2.37 
3.17 
3.05 
3.06 
3.64 
3.20 
4.40 
5.48 
5-20 
9.45 

17.00 
t Support screen, 16 x 16 x 0.0090 in. with no overlay screen. 

TABLE 1. List of overlay screens and combined resistance coefficients. 
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2. The equations of motion 
For steady incompressible flow past a wire grid of non-uniform properties 

it is assumed that viscosity effects are negligible except in the immediate 
vicinity of the grid. The plane of the grid, x = 0,  is taken normal to the walls 
of an infinitely long duct of constant cross-section (see figure 1). Far upstream 
and far downstream of the grid the static pressure is taken to be uniform and 
the lateral velocity components are taken to be zero. It is found by experiment 
that upstream and downstream of a grid, these conditions are reached within a 
distance roughly equal to the lateral dimensions of the grid. At the grid, which is 
considered to be a surface of hydrodynamic discontinuity (see Batchelor 1945), 
the effect of fluid viscosity produces a static pressure drop across the grid and 
locally deflects streamlines. The problem is to find the relationship between the 
flow far upstream and far downstream of the grid and the resistance and refrac- 
tion characteristics of the grid. In  obtaining a linearized equation of motion, 
the principal assumption made is that streamline deflexions are small. 

Neglecting body forces, we may write the equations of motion for the regions 
upstream or downstream of the grid as 

V H = q x o ,  (2.1) 
where 

The velocity and vorticity components are taken in the respective directions of 
the co-ordinate axes ( x ,  y, 2) .  If the lateral velocity components, u and u, are 
everywhere small in comparison with the longitudinal velocity component, U J ,  

the streamlines in each region will be approximately parallel to the z co-ordinate 
axis. Neglecting viscosity, and assuming that streamline deflexions are suf- 
ficiently small, we may take vorticity to be constant along streamlines. t This 
assumption is consistent with the linearization procedure which will be followed 
in simplifying the equations of motion. The vorticity components may then be 
written in terms of the velocity components far upstream and far downstream 
of the grid, all changes in vorticity being confined to the plane of the grid, which 
is considered as a surface of hydrodynamic discontinuity. If we denote quantities 
in the upstream region and the downstream region by subscripts - z and + 2 ,  

respectively, and quantities far upstream and far downstream by z = - 00 and 
x = + co, respectively, the vorticity is given by 

W&B o + m  = ( t*m7 Tfm, <*a) = (aw*m/aY, -aw*m/ax,O). 
Substituting these expressions for the vorticity components into (2.1) we may 
write the equations of motion for either region as 

(2.3) 1 aH&,lax = w&w,a/ax, aH*,laY = Whtz: aW&mIaY, 

aH.,lax = - ui, aw,,lax - u+, awka/ay. 

t For the case of two-dimensional flow, where w = ([, 0, 0 ) ,  it may be shown from the 
Helmholtz equation that vorticity is necessarily constant along streamlines. For three- 
dimensional flow the assumed constancy of vorticity along streamlines is a reasonable 
approximation only for sufficiently small streamline deflexions. 
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Since streamline deflexions have been assumed small, and since by Bernoulli’s 
equation the total head, H ,  in each region remains constant along streamlines, 

a q , l a z  N 0, 

and the equations of motion (2.3) reduce to 

To relate the flows in the regions upstream and downstream, this equation is 
evaluated in the immediate vicinity of the grid, z = & 0. Subtracting the resulting 
equations from one another, we find that 

d(H-0 - H+o) = wod(w-, - w+m), (2.4) 

where, to satisfy continuity of flow normal to  the grid, 

w-, = w+, = w,. (2 .5 )  

For small lateral velocity components, q-, N q+o, and from (2.2) and (1.2), 

K o - B + o  N (p-o-p+o)/p = ~ K W ; .  

If we substitute this expression into (2.4), the equation of motion finally simplifies 
to 

which is identical to the expression obtained by Elder (1959) for the case of 
two-dimensional flow. The equivalence between the two- and three-dimensional 
flows is a direct consequence of the assumption that streamline deflexions are 
small, which permits the same procedure for linearization of the equations of 
motion. 

2.1. The perturbation velocity potential 

In  order to solve (2.6) it is necessary first to establish a relationship between 
w,, w+, and w - ~ .  If the velocity components in the regions upstream and 
downstream of the grid are formulated in terms of perturbation velocities 
(indicated by *) which are superimposed on the basic flows at x = k 00, then 

Kdw, + $w,dK+ d(w+, - w-w) = 0,  (2 .6)  

u+, = u:,, v*, = v;z7 W i B  = W;z+W*w. (2-7) 

Since, for the assumed case of small streamline deflexions, vorticity is taken con- 
stant along streamlines in the two regions of flow, the perturbation velocity 
field should not contribute vorticity to the basic flows which are given at 
z = fa. It follows, therefore, that the perturbation velocity field in each 
region may be uniquely described by a perturbation velocity potential which 
satisfies the Laplace equation, V2 @* = 0, where 

For Cartesian co-ordinates a solution of the Laplace equation is possible assuming 
a separation of variables, a)* = X ( x )  Y ( y ) Z ( x ) .  

32 Fluid Mech. 19 
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Evaluating only Z(z), we can write the general solution (see, for example, Rouse 
@* = X ( x )  Y(y)(Aeza+Be-zz) .  1959) as 

From (2.7) it  is obvious that the perturbation velocities must vanish at z = f 03. 

Denoting the velocity potentials upstream and downstream of the grid by sub- 
scripts - z and + z ,  respectively, one obtains 

@EZ = X ( x )  Y(y)Aezz ,  = X ( x )  Y(y)Be*. (2.9) 

Now the velocity at the grid, w,, may be related to the velocities upstream and 
downstream, w-, and w+,, by using the boundary conditions at the grid 
(z  = ? 0), as given by (1.1) and (2.5). To satisfy continuity of flow normal to the 
grid ( z  = f 0 )  substitution of (2.7), (2.8) and (2.9) into (2.5) yields the expressions 

w, = w-,+AX(x) Y(y ) ,  w, = w+,-BX(x) Y ( y ) .  (2.10) 

Equation ( l . l ) ,  relating the lateral flow velocities on each side of the grid 
( z  = & 0), upon substitution of (2.7), (2.8) and (2.9), yields the following expres- 
sion for the constants A and B, 

B = aA. (2.11) 

(2.12) 

Substitution of (2.11) into (2.10) leads to the equation 

w, = (I/(  1 +a)> (w+, + aw-,). 
It is of some interest to  note that for the special case of continuity of lateral flow 
across the grid, a = 1, which is the case in the ‘actuator disk problem’, the 
velocity at the grid, for a given streamline, is the average of those far upstream 
and far downstream of the grid. For the general case where lateral velocities are 
discontinuous across the grid, equation (2.12) holds. 

2.2. Solutions of the linearized equation of motion 

The desired differential equation of motion relating the resistance and refraction 
coefficients of the grid and the velocity components far upstream and far down- 
stream may now be obtained by substituting (2.12) into (2.6). The derivation 
so far has been kept quite general in order to demonstrate that solutions which 
have been obtained previously by others follow from these same expressions. Two 
earlier solutions are given below, followed by the present solution. 

(i) Solutionof Taylor & Batchelor (1949). In  this case departures of velocityfrom 
uniformity are small, and flow is past a grid of uniform properties. The velocities 
far upstream and far downstream may be written as 

W-, = 1 +Aw-,, w+, = 1 + Aw+,, (2.13) 

where w-, and w+, are made dimensionless by dividing through by the mean 
flow velocity past the grid. The resistance and refraction coefficients of the 
grid which are constant will be denoted by KO and a,, respectively. Substitution 
of (2.13) and (2.12) into (2.6) yields 

(2.14) 
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(ii) Solution of Elder (1959). If the resistance and refraction coefficients of 
the grid are not constant, but their departures from uniformity are small they 
may be expressed as follows: 

I K = K0(1 +€), 

where 

b a=--- 

b 
a0 = ___- (8 < 1). 

(1 + KO)& 
Substitution of (2.13), (2.15) and (2.13) into (2.6) yields 

K = K o + 2  Aw-, I--- -Aw+, I+- [ ( 22) ( 1 2 J 9  

(2.15) 

(2.16) 

where quantities of O(e)2 and ~ [ ( A W , , ) ~ ]  are neglected. 
(iii) Present solution. In  the present solution departures of the resistance 

and refraction coefficients from uniformity will not be considered small, but the 
flow velocity far upstream of the grid, w-,, will be taken as uniform. This 
assumption of uniform flow upstream of the grid corresponds to conditions 
normally existing in wind-tunnel and water-tunnel experiments. Substitution 
of (1.4) and (2.12)into (2.6)yieldsanequationoftheform 

d W l d X + W X )  = &(XI, (2.17) 

where the following changes of variable have been made: 
w = l-w+m/w-oo, x = ( l + K ) * ;  

the quantities P(x)  and &(x) are given by the expressions 

Equation (3.17) is a linear differential equation of the first order and has a solution 

where C, is an arbitrary constant. 
Evaluation of the integrals in (2.18) is made difficult by the presence of the 

constant b, appearing in the functions P(x)  and &(x), which arises from the 
empirical relation for the refraction coefficient given in (1.4). To simplify the 
solution, b is taken as unity and the functions are rewritten in the following 

A simple computation shows that for the range 0.5 < K < 25, M is within 
the range 0.97 < M < 1-01, and N within the range 1.01 < N < 1.02. As an 
approximation, then, M and N will be considered constants for a given grid. 
If M is taken as unity, i t  follows by direct integration that 

form P ( x )  = W Y 2 + x - 1 ) / ( x S +  I), &(XI = NX(X+ l)/(x3+ 1). 

and 

32-2 
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Neglecting all but the first two terms in the series, the solution to (2.17) may 

(2.19) 

where x = (1 +IT)&, w’ = 1 - w ,  and yo = -C, /N.  The unknown constant yo 
may be determined by integrating each side of (2.19) over the cross-sectional 
area, A ,  of the duct. Noting that for continuity of flow, 

j A ( I - u ! f ) d A  = 0, 

it follows that 

I I I  I I I  I I l l  I I I I  I I  1 
0.3 0.4 0.6 0*8.1*0 2.0 3.0 4.0 6.0 8.0 10.0 15.0 20.0 

K, resistance coefficient 

FIGURE 3. Plot of equation (2.19), giving relationship between K and w‘ 
for a range of yo. 

Equation (2.19) is plotted in figure 3 for a range of yo-values, taking N = 1.02. 
For the design of a given grid, yo would be determined by selecting a screen having 
minimum K to produce the highest velocity desired. Substitution of w&&, and 
K,, into (2.19) would then allow yo to be determined. To complete the design 
of the grid for a prescribed distribution of velocity, w’, the distribution of K 
could then be determined graphically from figure 3 or from a replot of equation 
(2.19) for the particular yo which is adopted. 

In  figure 4 the two-dimensional velocity distributions downstream of three 
grids having linear variations in resistance coefficient have been calculated 
according to (2.19) and the first-order solution given by (2.16). The case con- 
sidered is for uniform flow far upstream of grids which are placed in a duct of 
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rectangular cross-section (0 < y f h). For each grid Kmin = 0.5. For comparison 
purposes the downstream velocity distributions are characterized by a shear 
parameter, 7, which is defined as 

7 = (awyay’~, yi  = y/h. 

-- First-order solution (2.16) - Higher-order solution (2.19) 
1.5 

1.4 

1-3 

1.2 

1.1 

1.0 

- 
- 
- 
- 
- c 

- 

W’ 

- 1.0 
0.9 - 

I I I I I I I I I 
0 0.2 0.4 0.6 0 8  1 -0 

Y’ = Y/h 
FIGURE 4. Comparison of theoretical velocity distributions for grids having 

linear resistance distributions. 

In table 2 the percentage differences, based on mean flow velocity, between 
velocities given by (2.16) and (3.19) are given for the three grids. The first- 
order solution is theoretically applicable only to weakly sheared flows, where 
departures from uniformity of velocity and resistance coefficient are small, and 
it is seen that for T > 0.50 the differences in resulting velocity distribution will 
exceed 4 yo. The higher-order solution, applicable to  moderately sheared flows, 
will presumably also break down at some higher value of 7 where the assumed 
constancy of vorticity along streamlines is no longer valid. This upper limit needs 
to  be determined by experiment. 
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The non-linear relation between velocity and resistance coefficient given by 
(2.19) is borne out by the experimental data obtained by Owen & Zienkiewicz 
(1959) for a grid with a linear distribution of resistance coefficient. These data 
are reproduced in figure 5 along with theoretical predictions given by (2.16) 
and (2.19), taking C = 0.78 as was discussed in the Introduction. The agreement 
is better when using (2.19), but for this case, where 7 = 0.45, the differences 
between the first-order and higher-order solutions is not appreciable. 

0.1 0-2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Ylh 

FIGURE 5. Comparison of theoretical and experimental velocity distributions, 
from measurements by Owen & Zienkiewicz (1957). 

Aw’(%) 
A r > 

7 y‘ = 0 y‘ = 0.5 y’ = 1.0 

0.24 - 1  1 - 1  
0.48 -3 2 -4 
0.78 -8 6 - 18 

TABLE 2. Percentage differences for velocity distributions of figure 4. 

3. The effect of streamline deflexions 
In  the derivation of (2.19) linearization of the equations of motion has been 

made possible by assuming that streamline deflexions downstream of the 
grid are small. This assumption has allowed the streamlines to be replaced by 
straight lines parallel to the walls of the duct, along which both vorticity, a, 
and total head, H ,  have been taken as constant. The solution given by equation 
(2.19), then, applies along straight streamlines, where the localvelocity far down- 
stream of the grid at a point in the lateral (a, y)-plane is produced by the local 
resistance coefficient a t  a point having the same lateral co-ordinates in the plane 
of the grid. For flow past a grid of non-uniform properties this condition will be 
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approached when w,, + w+,, which occurs as w+,/w-, --f 1, or as K -+ co (see 
equation (2.12)). The first limiting case, w+,/w-, + 1, is not of particular interest 
here since it corresponds to weakly sheared flows. The second limiting case, K --f 00, 
is not of practical interest since it will usually be necessary to use grids with low 
mean resistance-coefficients in order to obtain high flow velocities in test facilities 
which have limited power supplies. The following considerations are relevant 
therefore, for cases of moderately sheared flows where it is necessary to estimate 
the effect of streamline deflexions on the resulting velocity distributions. 

A grid may be represented by a number of elementary areas, A,(O), each 
element being associated with some average local resistance coefficient, Ki, 
and some average local longitudinal velocity, ~ ~ ( 0 ) .  These elements make up 
the cross-sectional areas of a collection of stream tubes which extend from the 
plane of the grid to far downstream. The manner in which A,(x) varies along a 
given stream tube is governed by the requirements that the flow rate be constant 
along each stream tube, that the sum of flow rates through all stream tubes at 
each cross-section of the duct be constant and equal to the total flow rate, 
and that the sum of the cross-sectional areas of the stream tubes be constant 
and equal to the duct cross-sectional area. These conditions may be summarized 
&S 

wi(z )A, (z )  = const. = Qi, 
hT 

i=l 
3 wi(z) Ai(z) = const. = &, 

c A,(z) = const. = A ,  
N 

i=l 
(3.3) 

where N is the total number of grid elements considered. If wi(z) is non-dimen- 
sionalized on the mean flow velocity, Q = A. 

Because streamline deflexions have not been taken into account in the solution 
given by (2.19) the above conditions will not necessarily be satisfied. To correct 
this deficiency the calculated velocity distribution will be adjusted according 
to  the following approximate method. Two cases will be considered. (i) For a 
given Ki and corresponding A,(O) distribution, find the corrected velocity 
distribution far downstream, wi( + a), and its corresponding area distribution, 
Ai( + m). (ii) For a given velocity far downstream, wi( + a), and corresponding 
A{( + m) distribution, find the corrected resistance coefficient distribution, Ki, 
and its corresponding area distribution, A,(O). Case (i), which is simplest, will 
be considered first, and the corrections for case (ii) will follow. 

For a given Ki and A,(O) distribution, the first estimate of wi( + m) is given by 
(2.19) and w,(O) by (2.12). If (3.1) is evaluated at the grid ( z  = 0) and far down- 
stream ( z  = + a), a first estimate of Ai( + co) will be given by 

Ai( + 00) = &,(O)/Wi( +a), 

where & i ( O )  = W,(O) Ai(0). 

But, in general, c A , ( + 4  * A ,  
N 

i=l 
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whichiscontraryto therequirement set forthin (3.3). To satisfy (3.3) thecorrected 
distribution of Ai( +a), denoted A,( + m)*, will be approximated by 

2 Ai( + co) 
i=l 

Rod 
1 
2 
3 
4 
5 
6 
7 
8 

IYI (in.) 
0.106 
0.318 
0.531 
0.745 
0-960 
1.176 
1-394 
1.614 

Rod 
9 

10 
11 
12 
13 
14 
15 
16 

IYI (in.) 
1.837 
2-063 
2.293 
2.527 
2-767 
3-013 
3.268 
3.534 

Rod 
17 
18 
19 
20 
21 
22 

TABLE 3. Calculated rod spacings for GRID A. 

1Yl (in.) 
3.813 
4.108 
4.426 
4.773 
4.158 
5.589 

N 

i=l 
Noting that, in general, I: Qi(0) =j= Q, the corrected distribution of Qi(0), denoted 

Qi(0)*, will be approximated by 

&i(O)* = 7 Q i ( O ) ,  
X QAO) 
i=l 

and the final corrected distribution of wi( + co), denoted wi( +a)*, is then given 

Wi( +a)* = Q N *  
A;( +a)* (3.5) 

The calculation of Ai( + m)* and wi( + a)* has been made for GRID A and GRID C 
of this paper and the numerical procedure is given in table 4. 

For case (ii), where it is desired to find Xi  and its corresponding A,(O) dis- 
tribution for a given wi( + co) and Ai( + co) distribution, the same procedure is 
followed initially to determine w( + co)* and A,( + a)*. A,(O) is then modified 
by the ratio Ai( +co)/A,( +a)* and the K ,  distribution calculated by (2.19) 
for a w' modified by the ratio wi( + co)/wi( +a)*. This procedure is repeated until 
the desired Ai( +GO) and wi( + co) distributions are obtained. 

4. Experimental results 
To verify the solution, experiments were performed in the 12 in. water tunnel 

at the Hydromechanics Laboratory, David Taylor Model Basin. The tunnel, 
which has an open-jet test section, was modified as shown in figure 6. A Lucite 
duct made in two halves was inserted in the test section, and extended down- 
stream of the entrance nozzle for a distance of 37 in. Each grid tested was mounted 
between mating flanges on the two halves of the duct and the entire duct assembly 
was held rigidly in place by four long bolts, threaded into the collector flange, 
which could be screwed tightly against the duct flange. The two halves of the 
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duct were kept in alignment by dowel pins which joined the matching flanges 
together. Velocity surveys in the duct were made using a rake of 0.125in. 
diameter static and impact tubes, attached to a hollow shaft which could be 
rotated about and translated along the axis of the duct. Without the grids, at 

i l Y i 4  j& 

1 0  2.73 
2 0.1 2.67 
3 0.2 2.51 
4 0.3 2.25 
5 0.4 1.92 
6 0.5 1.56 
7 0.6 1.20 
8 0.7 0-87 
9 0-8 0.61 

10 0.9 0.45 
11 1.0 0.39 

U’i(+ co) 
0.78 
0.79 
0.82 
0.86 
0.93 
1.02 
1.12 
1.23 
1.34 
1.42 
1-44 

GRID A 

%(0) A m  &do) 
0.86 0.50 0.43 
0.87 0.99 0.85 
0.89 0.98 0.87 
0.91 0.95 0-87 
0.96 0.92 0.88 
1.01 0.87 0.87 
1.07 0.80 0.86 
1.13 0.71 0.81 
1-18 0.60 0.71 
1-22 0.44 0.53 
1.23 0.10 0.12 

7.86 7.80 

A<( + a) Ai( + a)* 
0.55 0.55 
1.08 1.07 
1.06 1-05 
1.01 1.00 
0.95 0.94 
0.86 0.86 
0.77 0.76 
0.65 0.65 
0.53 0.53 
0.38 0.37 
0.09 0.08 

7.91 

W A  + a)* 
0.80 
0.81 
0.83 
0.88 
0.94 
1.03 
1.13 
1.25 
1-36 
1.44 
1.48 

GRID C 
i Ki w < ( + f )  wi(0) Ai(0) Qi(0) 
1 0.42 1.23 1.12 32.09 35.90 
2 1.07 0.99 0.99 5.19 5.16 
3 1.41 0.90 0.94 4.39 4.13 
4 2.04 0.77 0.86 4.03 3.47 
5 3.05 0.63 0.76 3.18 2.42 
6 5.20 0.46 0.63 5.08 3.18 
7 17.00 0.20 0.36 2.45 0.88 

56.41 55.14 

4 +a) 
29.20 
5.22 
4.59 
4.51 
3.84 
6.91 
4.40 

58.67 

A,(+CO)* 

28-10 
5.02 
4.41 
4.35 
3.69 
6.64 
4.23 

Wa( +a)* 
1.31 
1.05 
0.96 
0.82 
0.67 
0.49 
0.21 

TABLE 4. Summary of calculations of the corrected velocity and area distributions far 
downstream of GRID A and GRID C. The method of calculation is presented in 3 3. 

Mating flanges 
of duct halves 

. of Lucite duct 
Entrance nozzle of flow 

shaft 

FIGURE 6. Duct arrangement for experiments in David Taylor Model B a s h  
12-in. water tunnel. 
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a section located 2 in. upstream of the interface between the connecting halves 
of the duct, for water speeds of 6 and 11 ft./sec the respective velocity variations 
were less than k 2 yo and rf: 18 %. In  both cases the velocity increased radially 
outwards from the centre-line of the duct. The boundarylayer was approximately 
4 in. thick. 

The three grids which were tested to verify the solution (2.19) are discussed in 
the following sections. For GRID A and GRID C the effect of streamline deflexions 
has been calculated. 

4.1. GRID A 
GRID A was constructed of parallel cylindrical rods to give a cosine resistance 
coefficient distribution in the y-direction (see figure 6). The rod spacing (t) was 
determined according to ( 1.3), taking c = 0.78, such that 

The rods were made from stainless-steel precision shafting having a diameter, d, 
of 0-1247 in. ( + 0.0000 in., - 0.0002 in.), and the calculated locations of the 
rods are given in table 3. The measured rod spacings varied less than & 1 % from 
the calculated values. 

The first tests made on the grid indicated that at  mean water speeds greater 
than about lft./sec the rods near the axis of the duct began to vibrate due to 
vortex shedding. At speeds of about 2ft./sec vibrations of the rods was of such 
a high amplitude that flow near the axis, downstream of the rods, was nearly 
completely choked off. In  an effort to increase the speed a t  which vibration 
began, a &in. thick faired strut was inserted to restrain the rods along their 
mid-span. The measured velocity decrement downstream and directly behind 
the strut was approximately 2 yo. With the centre support strut inserted it was 
found that vibration did not occur up to a mean water speed of about 5 ft./sec. 

Velocity measurements were taken one duct diameter (12 in.) downstream 
of the rods, with centre support strut, at  a mean water speed of 4-3ft./sec. 
Non-dimensionalized values of the velocities recorded are shown in figure 7. At 
distances from 12 to 20in. downstream of the grid the pressure was constant 
over the duct cross-section and no significant change was measured in the velo- 
city distribution. (The relatively short length of the duct prevented making 
surveys further downstream.) Each experimental point plotted in figure 7 
represents the average of velocities measured at corresponding locations in the 
four quadrants of the circular duct. The measured variations a t  corresponding 
locations were less than rf: 3 %, and are attributed primarily to the unsteady 
nature of the flow, which caused the water levels in the manometers to fluctuate 
while each reading was taken. 

Figure 7 also shows the calculated velocity distributions according to the 
first-order solution (3.16), the higher-order solution (2.19), and the higher- 
order solution with corrections for the effect of streamline deflexions. The 
calculations for the corrected distribution are given in table 4, and it is noted 
that the corrections are quite small for this particular grid. While the corrected 
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distribution appears to be in best agreement with the experimental points the 
maximum deviation is about 3 %), the first-order solution gives fair agreement, 
the greatest differences occurring in the regions ly/RI < 0.2 and Iy/RI > 0.8. 
These differences are roughly as would be expected based on the previous com- 
parisons shown in figure 4 and figure 5.  

W’ 

1.0 0.8 0.6 0.4 0.2 0 

W’ 

1.0 0.8 0.6 0.4 0.2 0 
lY/Rl 

FIGURE 7. Comparison of theoretical md experimental velocity distributions 
for GRID A. 

4.2. GRID B an,d GRID C 
These grids were constructed by arranging square-mesh wire screens of varying 
mesh sizes in specified patterns on a support screen of 16 x 16 wires/ina. with 
an 0409in. wire diameter and a 0.267 solidity ratio. The resistance coefficients 
of the various screen combinations were determined experimentally (see table 1)  
and it has been assumed that the refraction coefficients calculated by (1.41, 
using the combined resistance coefficients, are valid for a double layer of screens. 

The fabrication of the grids required great care in order to piece them together 
accurately. After trying a number of rather crude schemes, which proved un- 
satisfactory, the following methodof fabrication was finally adoptedinassembling 
GRID B and GRID C: 

(1) The required screen pattern was drawn on a Qin. thick aluminium 
sheet and the pieces were cut out using a &in. thick band-saw blade. A 
number of &-in. diameter holes were then drilled in each pattern. 

(2) The required overlay screens were glued to the patterns and cut to size 
using the band saw. 

(3) The support screen was stretched and soldered to a stainless-steel frame; 
the aluminium-plus-screen patterns were laid out on the support screen, and 
through each hole the overlay and support screen wires were then spot welded 
together. 

(4) Solvent was applied to the glue and the aluminium patterns were removed. 
Final welding of the screens was then completed. 

GRID B was designed according to equation (2.19) to produce a circum- 
ferentially varying sinusoidal velocity distribution as given by the formula 

w’ = 1 + +(r/R)2 sin 28, 
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where rlR is the non-dimensional radius. Since the velocity distribution for this 
grid is similar to that for GRID A, where streamline deflexion corrections were 
found to be small, no corrections have been calculated for this grid. The dis- 
tribution of grid resistance required to produce the desired velocity distribution 
according to the high-order solution (2.19), along with the actual screens selected 
and their measured resistance coefficients are shown in figure 8. It will be 
noted that in certain instances the screens used depart somewhat from the 

0.94 
1-00 

FIGURE 8. Outline drawing of upper half of GRID B showing lines of constant velocity 
and overlay screen arrangement, according to high-order solution (2.19). 

Area 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Overlay screen 
geometry 

4 x 4 x 0.028 
8 x 8 x 0.017 

20 x 20 x 0-010 
20 x 20 x 0.011 
20 x 20 x 0.012 
18 x 18 x 0.015 
18 x 18 x 0.016 
18 x 18 x 0.017 
35 x 35 x 0-0095 
14 x 14 x 0.028 

None 

Actual 
K 

0.42 
0.80 
0.86 
1.10 
1.22 
1.41 
1.61 
1.68 
2.04 
2.64 
3.20 

Required 
K 

0.42 
0.65 
0.88 
1.10 
1.25 
1.40 
1-55 
1-70 
2.10 
2.60 
3.40 

required resistance coefficients; this is due to the limited number of screens 
available for grid fabrication. The measured and calculated velocity distributions 
are shown in figure 9. The measurements were taken one duct diameter down- 
stream of the grid ( z / R  = 2.0) where the static pressure was found to be uniform. 
No significant change was measured in the velocity distribution at x/R = 3.0, the 
furthest position downstream of the grid investigated. The maximum deviation 
of theory from experiment amounts to about 3 %  of the mean velocity. It 
may be concluded that the method of grid fabrication adopted is quite satis- 
factory and that a relatively small number of area elements may be used to 
produce a given velocity distribution. The latter point is important in reducing 
the time spent in fabricating grids, 

GRID C was designed to produce the axial velocity distribution in the wake of 
a ‘typical’ single-crew surface ship. Rather than simulate a given ship wake, 
a distribution of resistance coefficient using available screens was chosen which 
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would produce a fictitious but typically severe ship wake and which would 
permit checking of the high-order solution taking streamline deflexions into 
account. The arrangement of the screens for this grid is shown in figure 10. 
Also shown is the calculated area and corresponding velocity distribution far 

- 
Experiment 0 

theory - 

40 80 120 160 200 240 280 320 360 
B 

FIGURE 9. Measured and calculated velocities for grid designed t o  produce 
a sinusoidal velocity distribution (GRID B). 

downstream, according to the high-order solution (2.19), taking streamline 
deflexions into account. The calculated corrections are appreciable and a 
summary of their computation is given in table 4. In  applying the area cor- 
rections the points of intersection of the demarcation lines with the vertical 
centre-line have been assumed to remain fixed. Except in the regions close to 
these points the area corrections have been applied uniformly along the lines 
of demarcation of the area elements in the plane of the grid by displacing these 
lines in a direction normal to themselves. 

The measured and calculated velocity distributions, according to the high- 
order solution (2.19) taking into account streamline deflexion corrections, are 
shown in figure 11. The corrected theoretical curve is shown as a stepwise 
distribution of velocity in order to accentuate the stepwise nature of the re- 
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sistance distribution of the screens. The measured velocities are given for three 
axial positions downstream of the grid, xlR = 0 .5 ,2 -0  and 3.0. The measurements 
revealed that static pressure did not become uniform until a position nearly 
one duct diameter downstream of the grid, z/R = 2.0. Further downstream of 

9d 8=0" wi (+a)* 

FIGURE 10. Outline drawing of GRID C showing overlay screen arrangement and uncor- 
rected and corrected velocity distributions, according to high-order solution (2.19). 

Area 
1 
2 
3 
4 
5 
6 
7 

Overlay screen 
geometry 

None 
24 x 24 x 0.0075 
20 x 20 x 0.012 
18 x 18 x 0.017 
40 x 40 x 0.009 
14 x 14 x 0.032 
20 x 20 x 0.028 

Actual 
K 

0.42 
1.07 
1-41 
2.04 
3.05 
5.20 

17.00 

Area element ... I 2 3 4 5 6 7 

First-order solution (2.16) 1.35 1.30 1.13 0.98 0.75 0.27 -2.40 
B;gh -order aohit,inn (2.19) 1.31 1-05 0.96 0.82 0.67 0.49 0.21 

with streamline deflexion 
corrections 

TABLE 5 

this position the experimental results indicate that in areas of large velocity 
gradient the axial velocities tended to equalize. As would be expected, then, the 
calculated and measured velocities are in best agreement for the z/R = 2.0 
position (indicated by a dashed line in figure 11) where the static pressure has 
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become uniform and where decay of the high velocity gradients has not yet 
begun. 

For comparison the velocity distribution has been calculated according to the 
first-order solution (2.16). As can be seen in table 5 these velocities are in poor 

0.4 r r/R = 0.2 

Theory - 
(corrected high-order solution) 

0 0  
0 0 0  

*-*-a- - 
I w 

1 I 
0 20 40 60 80 100 120 140 160 180 

e 

FIGURE 11. Measured and calculated velocities for the grid designed to produce the 
axial velocity distribution in the wake of a single-screw surface ship (GRID C). 

agreement with those calculated using the high-order solution (2.19) with 
streamline deflexion corrections. It is concluded that the present solution is 
adequate for designing grids to produce moderately sheared flows of severity 
comparable to that produced by GRID C. The particular method of grid fabri- 
cation employed appears to  be satisfactory. 
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This work was carried out at  the Hydromechanics Laboratory of David 
Taylor Model Basin and is published by permission of its Director. Special 
thanks are given to Mr Angelo Campo who assisted in performing the experi- 
mental portion of this study, and to members of the shop who perfected the 
method of fabricating grids from wire screens. 
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